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ABSTRACT

\

, " This paper reviews the state of the art in enumerative solution methods

- for the traveling salesman problem (TSP). The introduction (Section 1)
discusses the main ingredients of branch and bound methods for the TSP.
Sections 2, 3 and 4 discuss classes of methods based on three different re-
laxations of the TSP: the assignment problem with the TSP cost function, the
l-tree problem with a Lagrangean objective function, and the assignment
problem with a Lagrangean objective function., Section 5 briefly reviews some
other relaxations of the TSP, while Section 6 discusses the performance of

3 some state of the art computer codes, Besides material from the literature,

the paper also includes the results and statistical analysis of some computa-

tional experiments designed for the purposes of this review.
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1, Introduction

Since the first attempt to solve traveling salesman problems by an enumer-

ative approach, apparently due to Eastman [1958], many such procedures have been

proposed. 1In a sense the TSP has served as a testing ground for the development

of solution methods for discrete optimization, in that many procedures and devices

were first developed for the TSP and then, after successful testing, extended to
more general integer programs. The term "branch and bound" itself was coined by

Little, Murty, Sweeney and Karel [1963] in conjunction with their TSP algorithm,

Eaumerative (branch and bound, implicit enumeration) methods solve a dis-
crete optimization problem by breaking up its feasible set into successively
smaller subsets, calculating bounds on the objective function value over each
subset, and using them to discard certain subsets from further consideration.
The bounds are obtained by replacing the problem over a given subset with an easier
(relaxed) problem, such that the solution value of the latter bounds that of the
former. The procedure ends when each subset has either produced a feasible
solution, or was shown to contain no better solution than the one already in
hand. The best solution found during the procedure is a global optimum,

For any problem P, we denote by v(P) the value of (an optimal solution

. to) P. The essential ingredients of any branch and bound procédure for a dis-

~

crete optimization problem P of the form min/f(x)|x £ S} are
(i) a relaxation of P, i.e, a problem R of the form min’g(x)|x 2 TI,
such that S=T and for every x,v€S, f(x) < £(y) implies g(x) < g(v).

- (ii) a branching or separation rule, i.e, a rule for breaking up the

feasible set S, of the current subproblem Pi into subsets
; S S h th : S

ce such that =S,
1100 Cge mp 40H
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(iii) a lower bounding procedure, i.e, a procedure for firding (or
approximating from below) V(Ri) for che relaxation Ri of each
subproblem 1 and

(iv) a subproblem selection rule, i.e. a rule for choosing the next

} subproblem to be processed.

.‘.
]

Additional ingredients, not always present but always useful when present, .
are
(v) an upper bounding procedure, i.e. a heuristic for finding feasible
solutions t¢ P; and
(vi) a testing procedure, i.e., a procedure for using the logical implications
of the constraints and bounds to fix the values of some variables
(reduction, variable fixing) or to discard an entire subproblem
(dominance tests).
For more information on enumerative methods in integer programming see,
for instaace, Chapter 4 of Garfinkel and Nemhauser [1972], and/or the surveyvs
by Balas [1975], Balas and Guignard [1973], Beale [1979], Speilberg [1979].
Since by far the most important ingredient is (1), we will classify the
branch and bound procedures for the TSP according to the relaxation that they
use,
The integer programming formulation of the TSP that we will refer to when ’
discussing the various solution methods is defined on a complete directed graph
G = (V,A) on n nodes, with node set V = {1,...,n}, arc set A = {1, ,5 = 1,...,a},

and nonnegative costs cij associated with the arcs., The fact that G is
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complete involves no restriction, since arcs that one wishes to ignore can be

assigned the cost cij = =, 1In all cases ey =% ¥ iSV. The TSP can be

formulated, following Dantzig, Fulkerson and Johnson [1954], as the problem

(1) min S ZTe, .x. . :
ievyey 13 1 i

s.t.
p X, = 1, igv
jev M
(2)
© x,, =1, j&v
iey
(3) S ZTxys is]-1, ¥SZV, SH
i<Sjss
(&) xij =0 or1, 1i,jev,
where X, = 1 if arc (i,j) is ian the solution, xij = 0 otherwise,
1
The subtour elimination inequalities (3) can also be written as
(5) - - xljzl, VSEV,SM

igsjev.s
A very important special case is the symmetric TSP, in which cij = cji’
¥i,j . The symmetric TSP can be defined on a complete undirected graph G =(V,E)

on n nodes, with node set V, edge set E, and arbitrary costs ¢ It can

ij*

be stated as

(6) ain = Z¢, .x
i€vi>i 131]
s,s.
(7N Sx+ Ixym2, 1ev
>
/
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(8) iEESjESxij < lsl-1, ¥ SgV, sH
i>i

(%) xij =0orl, i,jev , >4

where the subtour elimination inequalities (8) can also be written as

(10) z £ X, + T Zx..2>2, ¥SsgVv, S0
iesjev\s 3 iev\sjes *J
i >i

Next we outline two versions of a branch and bound procedure for the TSP.
Prior to using any of these versions, a relaxation R of the TSP must be
chosen, Both versions carry at all times a list of active subproblems, They
differ in that version 1 solves a (relaxed) subproblem Rk only when node k is

selected and taken off the list, while version 2 solves each (relaxed) sub-

problem as soon as it is created, i.e. before it is placed on the list,
Although the branch and bound procedures used in practice differ among them-
selves in many details, nevertheless all of them can be viewed as variants of
one of these two versioms,

Branch and bound method for the TSP

Version 1

1., (Initialization), Put TSP on the list (of active subproblems). Initia-
lize the upper bound at U =, and go to 2,

2. (Subproblem selection), If the list is empty, stop: the tour associated
with U is optimal (or, if U =, TSP has no solution), Otherwise choose

a subproblem TSPi according to the subproblem selection rule, remove TSPi

from the list, and go to 3.
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3. (Lower bounding)., Solve the relaxation Ri of ISPi or bound V(Ri) from ?
below, and let Li be the value obtained. i
if L, 2 U, return to 2. %
1£f Li < U and the solution defines a tour for TSP, store it in place
E of the previous best tour, set U ~ Li’ and go to 5.
: E L 1f Li < U and the solution does not define a tour, go to 4,
' 4, (Upper bounding: optional), Use a heuristic to find a tour in TSP, If
a better tour is found than the current best, store it in place of the
latter and update U. Go to 5.
5. (Reduction: optional), Remove from the graph of TSPi all the arcs whese i
inclusion in a tour would raise its value above U, and 2o to 6. :
' 6., (Branching). Apply the branching rule to TSPi, i.e, generate new

subproblems TSPil,..., TSPiﬂ, place them on the list, and zo0 to 2,

Version 2 H
1. (Initialization), Like in version 1, but solve R before putting TSP ?
on the list,
| 2, (Subproblem selection), Same as in version 1, E

3. (Upper bounding: optional), Same as step & of version 1, with "go to 5"

replaced by "go to 4."

5~

(Reduction: optional). Same as step 5 of version 1, with "go to 6" replaced

by "to go 5."

5. (Branching), Use the branching rule to define the set of subproblems

ISP.15¢¢0,TS?, to be generated from the current subproblem ISP,,
il i

iq

and Zo to A,
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A, (Lower bounding). If all the subproblems to be generated from TSP,

-

according :to the branching rule have already been generated, zo %o 2

Utherwise zenerate the next subproblem ISPi. defined by the branching
3

rule, solve the relaxation Rij of TSPij or bound V(R'j) from below,
i

and let Lij be the value obtained,
If Lij > U, return to 6,
If Lij < U and the solution defines a tour for ISP, store it in place

of the previous best tour, set U ~ Lij’ and go to 6.

Iz 1

Lij < U and the solution does not define a tour, place TSPij on the list

and return to £.

In both versions, the procedure can be represented by a rocted tree (search

or branch and tound ctree) whose nodes correspond to the subproblems generated,

with the rcot ncde corresponding to the original problem, and the successor nodes

of a given node 1 associated with TSPi corresponding to the subproblems
TSP *SPiq defined by the branching rule.

it is easv tc see that under very mild assumptions on the branching rule
and the relaxation used, both versions of the above procedure are finite (see

Exercise 1).

Nex: we discuss various specializations of the procedure outlined above,
classified according to the relaxation that they use. When assessing and
ccmparing the various relaxations, one should keep in mind that a '"good" re-
laxation is cne that (i) gives a strong lower bound, i.e, yields a small

d

P

ffarence v(TSP) -~ v(R) ; and (ii) is easy to solve, Naturally, these are

2fzen conflicting 30als, and in such cases one has to weigh the tradeoffs.
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-« Relaxacion T: The Assigznment Problem with the TSP Cast Fungzicn

The most straightforward relaxation of the TSP, and hist.rically the first
one to have been used, is the problem obtained from the integer programming
formulation (1), (2), (3), (4) by removing the constraints (3), i.e. the
assignment problem (AP) with the same cost function as TSP. * was used,
among others, by Eastman [1958], Little, Murty, Sweeney a Varel [1963],
Shapiro [1966], Bellmore and Malone [1971], Smith, Srini in. and Thompson
[1977], Carpaneto and Toth [1980].

An assignment (i.,e,, a solution to AP) is a union c¢f directed cycles,
hence =2ither a tour, or a collection of subtours. There are nl distinct
assiznmencs, of which (n-1)! are tours, Thus on the average one in every n
assignments is a tour, Furthermore, in the current concext only those assign-
ments are of interest that contain no diagonal elements {(i.e., satisfy xii =
0, i=l,*+s,n), and their number is n!/e rounded to the nearest integer,

i.e, |nl/e + 1/2] (see, for example, Hall {19671, p. 10). Thus on the average cne
in evervy n/e 'diagonal-free" assignments is a tour, This relatively high fre-
quency of tours among assignments suggests that v(AP) is likely to be a pretty
strong bound on vV(TSP), and computational experience with AP-based solution
methods supports such a view, To test how good this bound actually is for
randomly generated problems, we performed the following experiment, We gen-
erated 400 problems with 50 < n < 250 with the costs independently drzwn from a
uniform distribution of the incegers over the intervals [1,100] and [1,1000},

and solved both AP and TSP, We found that on the average v(AP) was 99,27 of

-+17$?), Tur-hermore, we found the bound to improve with prcblem size, in that

(]
"

the oroblams with 50 < n < 130 and 150 < a < 250 the outcomes were 98,8%

2]
€

f

32,357, raspectively.




AP can be solved dv the Hungarian method (Nuhn 713337: Zor a more recent

. P o= . - . BN
-~raacment, see Christofides [19731 or Lawler [197213 ia at most J/n™" s:ters,

ey

14

T

rn

Zhe assiznmenc sroblems A?i to be solved at =very node 5f che search tree di
from the initial assignment problem AP in that scme arcs are excluded (forbidden)
from, while other arcs are included (forced) into the solution, These modifi-
cations do not present any difficulty, Since the Hungarian method provides at
every iteration a lower bound on v(AP), the process of solving a subproblem can

be stopped whenever the lower bound meets the upper bound U. More importantly,

in the typical case (see the branching rules below), the assignment problem APj

(31}

to be solved at node i I the search tree differs from the problem APi sclved

at the parent mode i only in that a certain arc belonging to the optiral sclutien
2f AP, is excluded from the solution of APj, and possibly some other arcs are
c2quired o maincain the same position (in or out) with rescect to the solution

of AP,, chat thev have with respect to that of APi. Whenever this is the case,

the problem AP, can be solved by the Hungerian method starting from the optimal

J ol

solution of the problem at the parent node (or at a brother node), in at most O0(n")
steps (see Exercise 2 or Bellmore and Malone [ 1971])., For an efficient implementa-
tation of this version of the Hungarian method, which uses on the average consider-

ably less than 0J(n~) steps, see Carpaneto and Toth [1980]. The primal simplex

method for the assignment problem has also been used in a parametric version
te solve efiiciently this sequence of interrelated assignment problems by

mich, Srinivasan and Thempson [1977],

[¥D]

The lower bound v(AP) can be slizhtly improved by addition of a penalry,

is can be calculated as the minimal increase in the objective function

[}
oy

causzad zither dv a first simplex pivoe chat eliminactes some arc f£rom the

s
[\})

s:lztisn, or oy a first iceracion of the Hungarian method that accomplishes the

B

ng. Turthermore, the are 2 be iacluded in the sciution Sv the »ivar can He

fv
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sascricted o a4 cutset defined by some subtour of the AP scluticn, Compuca-
iional experience indicates, however, that the impact of such a peralty tends

2> decrease with problem size and is negligible for anything but smail problems,
In the computational experiment involving the 400 randomly generated problems

that we ran, the addition of a penalty to v(AP) raised the value of the lower

bound on the average by 0,03%, from 99.2% to 99.23% of <v(TSP).

Branching rules

Several branching rules have been used in conjunction with the AP relaxa-
ation of the TS?. 1In assessing the advantages and disadvantages of these rules
one should keep in mind that the ultimate goal is to solve the TSP by solving
as few subprcblems as possible, Thus a '"good" branching rule is one that
.2) generates few successors of a node of the search tree, and (b) generates
strongly constrained subproblems, i.e, excludes many solutiomns from each
subproblem, Again, these criteria are usually conflicting and the merits of

the various rules depend on the tradeoffs,

We will discuss the various branching rules in terms of sets of arcs

from, and included (Ik) into the solution of subproblem

excluded (Ek)
k. In terms of the variables X5 the interpretation of these sets is that

subproblem k is defined by the conditionms
<(0, (i,3)
Ll, (1,3

in addition to (1), (2), (3), (4). Thus the relaxation of subprobiem %k is

ziven by (11) in addition zo (1), (2), (4). 'We abbreviate Branching Rule
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BR 1, (Little, Murty, Sweeney and Karel {1963])., Given the current re-

laxed subproblem AP, and its reduced costs €,, =¢c,, ~ u, = v,, where u,
k ij ij i N i

and vj are optimal dual variables, for every arc (i,j) such that Eij =0
define the penalty

(4 7 ¢
= min 4&.. : hEVLi1r + min 1€ . : hEV {i
Pyy = min i, h&v *J}j + min {chj : h€v k1}}

and choose (r,s) £ A such that

= max Ip.. 1 ¢,. =0
rs Fij ij

L.Y_I

P

Then generate two successors of node k, nodes k +1 and k + 2, by

defining

1
i

w1 =B L9, Ty = T

and

Epp2 = B¢ o L =k Aol .

This rule does not use the special structure of the TSP (indeed, it applies
to any integer program), and has the disadvantage that it leaves the

optimal solution to AP, feasible for AP "

k k+2°

The following rules are based on disjunctions derived from the subtour

elimination inequalities (3) or (5).

BR 2, (Eastman [1958], Shapiro [1966]), Let xk be the optimal solution to
the current relaxed subproblem APk, and let AS = {(il,iz),...,(it,il)} be the
arc set of a minimum cardinality subtour of xk involving the node set
S = {il....,it}. Constraint (3) for S implies the inequality

(3" —— x,<|s| -1,
(i,j)EASJ

which in turn implies the disjunction




Generace

(13

Now xk i

of a shortest s

However, the di

T successcrs »I node k, defined by

=E (i) ]

r = ].,oao.t

s clearly infeasible for all APk

e T l,ie0,t, and the choice

ubtour for branching keeps the number of successor nodes small,

sjunction (12) does not define a partition of the feasible set

of APR, and thus different successors of APk may have soluctions in cormon. This

shorteccoming is

it strengthens

remedied by cthe next rule, which differz from 3R 2 only in that

the disjunction (12) to one that defines a parzi:iom,

BR 3. (Murty [1968], Bellmore-Malone [1971], Smith, Srinivasan and

Thompson [1977]

and accordingly

Prsr

(13)
tgtr
wiczh 1 =1
* -1 1
s51izhely
Zhe 2c22 set A

Yo The disjunction (12) can be strengthened to

(13) can be replaced by

il s b
= E “l(lr’ir+l)‘
T = 1,oooyt

= L C0(qsig)seees (i 01 )]

different version of 3R 3 (as well as of 3R 2) is to replacs

27 a minimum-cardinalicy subtour with thar =i a subtour with 2




winimum number oI rfree edzes (i.e, edzes of E*EK;I,), This rula i3 used in
7k

Carpareto and Toth {12807,
38R 4, (Bellmore and Malone [1971]). Let xk and S be as before.

Constraint (5) implies the disjunction

(16) (xi15 =90, j€s) V(xizj =0, j€S) V...V(xitj = 0, jSs).

Generate t successors of node k, defined by

Epip = By <1(i,3) 1 38O Y

(17) r=1l,.4a,t
- =7
R+r “k

Like in the case of 3R 2, Br 4 makes xk infeasible for all successor
problems of APk, but again (16) does not partition the feasible sect of APk’
This is remedied by the next rule, which differs from BR 4 omly in that it

defines a parcicicnm.

3R 5., (Garfinkel [1973]1). The disjunction (16) can be strengthened to
18) = j€ = JETS; 3 . = i€ Voo
( (xilj 0, j€s) \/(xilj 0, j&S; Yin 0, j€8)

Vez; 4 =0, JENS,r = 1,e0e,t-1; X 4= 9, j€s)

r

and accordingly (17) can be replaced by

Loy =B SlULD: jés}’.{(iq,j): a=1,...,r-1, J5V' S;
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The two rules BR 2 and BR &4 (or their strengthened variants, BR 3 and
BR 5), based on the subtour-elimination constraints (3’) and (5), respectively,

generate the same number of successors of a given node k., However, the rule

based on inequality (5) generates more tightly constrained subproblems, i.e.,

excludes a greater number of assigmnments from the feasible set of each successor

‘ problem, than the rule based on inequality (3’). 1Indeed, with |S| = k, we have
Theorem 1. (Bellmore and Malone [1971]). Each inequality (3') eliminates
[(n-k)!/e + 1/2| diagonal-free assignments, whereas each inequality (5) eliminates
l(n-k)!/e + 1/2] - |k!/e + 1/2| diagonal-free assignments.
Proof. Each inequality (3') eliminates those diagonal-free assignments
that contain the subtour with arc set As. There are as many such assignments
as there are diagonal-free assignments in the complete graph defined on node |

set V.S, and the number of these is (n-k)!/e rounded to the nearest integer, i.e.,

| (n~k)!/e + 1/2| (see section 2).

On the other hand, each inequality (5) eliminates those diagonal-free
assignments consisting of the union of two such assignments, one in the complete
graph defined on S, the other in the complete graph defined on V\S. Since the
number of the latter is |(n-k)!/e + 1/2| and that of the former is |k'e + 1/2y,
the number of diagonal-free assignments eliminated by each inequality (5) is as
stated in the theorem.

Nevertheless, both Smith, Srinivasan and Thompson [1977) and Carpaneto and
Toth [1980] found their respective implementations of BR 3 more efficient than

BR 4 or BR 5, both in terms of total computing time and number of nodes generated,

We have no good explanation for this,
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The subproblem selection rule used by many branch and bound algorichms is the
ne xnown as ''depth first” or LIFO (last in first out), It amounts to chcosing
one of the nodes generated at the last branching step (in order, for instance,
of nondecreasing penalties, like in Smith, Srinivasan and Thompson

{1977]); and when no more such nodes exist, backtracking to the parent node

and applying the same rule to its brother nodes, This rule has the advantage
of modest storage requirements and easy bookkeeping, Its disadvantage is that
possible erroneous decisions (with respect to arc exclusion or inclusion’ made
early in the procedure cannot be corrected until late in the procedure,

The alternative extreme is known as the '"breadth first" rule, which
ameunts to always choosing the node with the best lower bound. This rule has
the desirable feature of keeping the size of the search tree as small as possible,
{see Exarcise 3), but on the other hand requires considerable storage space. In
order to keep simple the passage from one subproblem to the next one, this rule
must be embedded in a procedure patterned after version 2 of the outline in the

introduction, which solves each assignment problem as soon as the corresponding node

is generated, and places on the list only those subproblems TSPij with Lij < U,
The procedure of Carpaneto and Toth [1980] uses this rule, and it chooses the
subproblems to be processed (successors of a given node) in the order defined
by the arc adjacencies in the subtour that serves as a basis for the branching,

As mentioned earlier, the high frequency of tours among assigmments makes
AP a relatively strong relaxation of TSP, which in the case of random (asymmetric)
costs provides an excellent lower bound on v(ISP), However, in the case of
the syvmmetric TSP, the bound given by the optimal AP solution is substantially

.. P
W2 3Ex

fu

a

o An experiment that we ran on 140 problems with 40 < n < 100 and wich

3vne

[}

Tic costs indepencdently drawn from a unifcrm distribution of the incegers

R~ TA N Ko ARS, | R IR

i
«
|
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in che interval [1, 1000], showed +v(AP) %o be on the average 82% of v(ISP),

while the addition of a penalty raised the bound to 85%. The explanation of cthe

relative weakness of this bound is precty straightforward: in the symmecric case,

there is a tendency towards a certain symmetry also in the solution, to the effect

that if x.,, =1, then (since ¢, c,.
ij 1] Ji

and thus the optimal AP solution usually contains a lot of subtours of lemgth 2,

), one tends to have xji = 1 too;

irrespective of the size of n ., Thus as a rule, a much larger number of
subtours has to be eliminated before finding an optimal tour in the symmetric
case than in the asyrmetric one. This makes the AP a poor relaxation for

the symmetric IS?.

3, Relaxation II: The 1-Tree Problem with Lagrangean Qbjective Function

This relaxation was successfully used for the symmetric TSP first by Held
and Karp [1970, 1971] and Christofides [1970], and subsequently by Helbig Hansen
and Xrarup [1974], Smith and Thompson [1977], Volgenant and Jonker [1982].

Consider the symmetric TSP and the undirected (complete) graph G = (V,E)
associated with it., The problem of finding a connected spanning subgraph H
of G with n edges, that minimizes the cost function (6), is obviously a
relaxation of the symmetric TSP, Such a subgraph H consists of a spanning
tree of G, plus an extra edge, We may further restrict H to the class 7
of subgraphs of the above type in which some arbitrary node of G, say node |,
has degree 2 and is contained in the unique cycle of H, For lack of a
better term, the subgraphs of this class J are called l-trees. To see that

finding a l-tree that minimizes (6) is a relaxation of the TSP, it suffices ro

f2alize that the coanstraint set defining the family 7 is (9) and

PRyt mmsn




(29) - T x, .+ C Zx,,>1, ¥ 5SSV, S#2
izsjav' s td 0 12y syes =
i>i i>i
(21) T Tx,.=n
i&i>i 1
(22) Sx, , =2

Here (20) is a weakening of (10), (21) is the sum of all equations (7)
divided by two, and (22) is the first equation (7).

The minimum-cost l-tree problem is easily seen to be cecomposable into
two independent problems:

(a) to find a minimum-cost spanning tree in G - ‘1}; and

{8) to find two smallest-cost edges among those incident in G with node 1,

The n-2 edges of the spanning tree found under (&), together with the
2 edges found under (8), form a minimum-cost l-tree in G.

Solving problem (8) requires O0(n) comparisons, whereas problem (a)
can be efficiently solved by the algorithms of Dijkstra [1959] or Prim (1957},
of complexity O(nz), or by the algorithm of Kruskal [1956], of complexity
O(IE: log [E{). Since the log ]El in the last expression comes from sorting
the edges, a sequence of subproblems that requires only minor resorting of the
edges between two members of the sequence can be more efficiently sclved by

Xruskal's prccedure than by the other two.

The number of l-trees in the complete undirected graph G on n nodes can be

calculated as follows: the number of distinct spanning trees in G - {17 is

.n=3 ‘a=1
(a=1" (Cailey's formula), and from each spanning tree cne can get {2 Qistinet

l-trees bv inserting two edges joining node 1 to the tree. Thus the number of




s i o i TS T8 Bt g 1 vt e

17

l-trees in G is %(n—?)(n-l)n-z, which is much higher than the number of solu-

tions to AP. Since G has (n-1)! tours, on the average the number oI tours among

the l-trees of a complete undirected grapn is one in every %(n-Z)(n-l)n-S/(n-2)!,
and hence the minimum-cost l-tree problem with the same objective function as

the TSP is a rather weak relaxation of the TSP. In the above mentioned computa-
tional experiment on 140 randomly generated symmetric problems, we also solved

the corresponding l-tree problems and found the value of an optimal l-tree to be

on the average only 637% of v(TSP). However, this relaxation can be considerably
strengthened bv taking the equations (7) into the objective function in a Lagrangean

fashion, and then maximizing the Lagrangean as a function of the multipliers.

The problem

(23) L(M) = min 2 Zoe % .+ A (T x4 T Xi. " 2)
@it N g Py Y o M

= min £ T (e,, +X., +A)x,, -2 T\,
XL ot iev *

where A is anv n-vector and X(s) is the set of incidence vectors of l-trees in

G, i.e., the set defined by (9), (20), (21), (22), is a Lagrangean relaxation

of the TSP. From the last expression in (23) and the fact that X(s) contaias
all tours, it is easy to see that for any )\, L(i) < v(TSP). (For surveys of
Lagrangean relaxation in a more general context see Geoffrion [1974], Fisher

[1981), Shapiro (197%).) The strongest Lagrangean relaxation is obviously given

bv \ = » such that
24) LL) = max L) .

> J

Prablem (24 is sometimes called a Lazrangean dual of the ISP,
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Now (24) is a much stronger relaxation than the l-tree problem
with the TSP cost function, Indeed, computational experience with randomly
generated problems has produced on the average values of L(i) of about 997
of v(TSP) according to Christofides [1979] (p. 134), and of about 99,7%
of v(TISP) according to Volgenant and Jonker [1982}.

However, solving (24) is a lot more difficult than solving a l-tree
problem., The objective function of (24), i.e. the function L().) of (23), is
plecewise linear and concave in A, Thus L(A) 1is not everywhere differentiable,
Held and Karp [1971], who first used (24) as a relaxation of the TSP, have tried
several methods, and found that an iterative procedure akin to the relaxation method
of Agmon [1954] and Motzkin and Schoenberg [1954] was the best suited approach
for this type of problem. The method, which turmed out to have been theoret-
ically studied in the Soviet literature (see Polyak [1967] and others)

became the object of extensive investigations in the Western literature under

the name of subgradient optimization, as a result of its successful use

by Held and Karp in conjunction with the TSP (for surveys of subgradient opti-
mization in a more general context see Held, Wolfe and Crowder [1974],
Sandi [1979]).

The subgradient optimization method for solving (24) starts with some
arbitrary \ = A° (say the zero vector) and at iteration k wupdates kk as
follows. Find L(AY), i.e. solve problem (23) for A =15, Let uHOK) be
the optimal l-tree found, If H(kk) is a tour, or if v(H(kk)) > U,
stop. Otherwise, for i¢v, 1let d, be the degree of node i in a(xk).

i

Then the n-vector with components d? - 2, 15V, is a subgradient of L(A) at kk

(see Exercise 4), Set
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o 1 ‘ 1
N . w1 XL L. e
225) h =N, + (@, -2, i<V

=
'™
=

whera t° 1is the "step length" defined by

(26) e = a - L5/ T (@ - 22

igv
with 0 < ¢ < 2. Then set k — k+1 and repeat the procedure.
It can be shown (see any of the surveys mentioned above) that the method

Z ok k

converges if T t == and lim t = 0. These conditions are satisfied if
k=1 k-

one starts with 5 = 2 and periodically reduces z bv some factor.

Zxample 1.

Consider the 8-citwv symmetric TSP whose graph is shown in Fig. 1 (only arcs

with finite cost are present). Initially U = 25, 5 = 2, Az =0 fori=1,...,8.

+

Fig. 1. 1Initial graoh G = (V,E)
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The optimal l-tree, shown in heavy lines in Fig. 1, has a weight of L(ko) = 21.

At iteration O we have:

d: =(2,2,4,1,1, 3,2, 1);

0

t® = 2(25-21)/8 = 1;

L1

A= (0, 0,2, -1, -1, 1, 0, -1).

The updated arc costs (cij + ki + x;) and the corresponding optimal l-tree,

having a weight of L(xl) = 24, are shown in Fig. 2.

Fig. 2. Updated graph G = (V,E)

1
We have di =2 fori=1,...,8; thus a tour has been found and the procedure stops.
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Held and Karp [1971] pointed out that irf 2 is raken to be, instead of

Qd, the vector defined bv

i

l

!

i

.0 ' : oy

i : S TR P i,
i

where (u, v) is an optimal solution to the dual of the assignment precblem with
] R
costs ¢, ., = CLiyo ¥ i,j, then one alwavs has v(H(» ) _ v(AP), Indeed, for this i
1 ]

J
choice of \o one has from (23)

L(G:®) = min ToZte e Dx -2 1?
XX iiv o4 M ! 3 12V
. . e 1 _
= min T b ;[(ci, -y - v,) + (c,i - u, - vi)] + = (ui + vi\
X X@E) iV ji - J J J J i<y
- v(AP), '
since v(AP) = iEv(ui + vi\ and cij - ui - vj >0, ¥1,j.

This kind of initialization requires of course that one solve AP prior to
addressing problem (24). u
Helbig Hansen and Krarup [1974) and Smith and Thompson [1977] distinguish be-

tween the application of the subgradient procedure at the root node of the t
search tree and at subsequent nodes, by using different starting vectors A2° i

and different stopping rules,

Volgenant and Jonker [1982] use an updating formula for Ak, and an ex-

pression for tk, different from (25) and (26), respectively. Namely, they

k . . .
take t to be a positive scalar decreasing according to a series with a

constant second order difference, i.e,

(27) t -2t +t = = constant,
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(25

(28) T

k ~1

1, ..
13 + O.6t&(d?-2) + 0,4¢ (d% =20 otherwise
\ 1 i 1

It should be mentionmed that none of the versions of this subgradient optimizaticn
method can be guaranteed to solve (24) in polynomial time with a prespecifiec
degree of accuracy, However, the stopping rules are such that after a cartain

number of i:terations the procedure terminates with an approximation to an

optimal ., which zives a (usually gocd) lower bound om L(%).

2ranchinz rules

5% 4. (Held and Karp {1971]). At node k, 1let the free edges of the current

l-tree (i.,e, those in E\EkJIk) be ordered according to nonincreasing penalties,
and let che first q elements of this ordered set be J = f(il,jl),...,(iq,jq)},

where q will be specified below, Define q new subprcblems by

- a . s . - ﬂ‘ -
LK+r = Ik - (lh’Jh> . h = 1,loo,r-1‘ r l,...,q
. . . b}
(29) F‘k+r = Ek ‘V{(lr)Jr)J ? r = l,o..,q'l
- =5 fr3 s PR . -
z = O, HET : i =por j=p
x+q B L1, D k+a ? ] P
Zere p 2V is such that Ik contains at most one edge iacident with
2, whila In¢q contains two such edges; and q is the smallest subscript
:% zu 2éz2 in J for which a node with the properties of p exists,
Thais rule parcitions the feasible set, and makes the current l-treae
infizsitl: £2r each oL the new subproblems generated, but zhe aumber g  2f
Toe metr sunprodlems 1s :fzen larger chan necessary,

v Bl
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[£0)

3R 7. Smich and Thompsen [1977]1)., Chouvse a node ~hose dezree in zhe

current i-cree is not 2, and a maximum-cost edge  (i,j) ameng those incident

{ wich the chosen node. Then generate two new subproblems derfined by

=5 feii) : =
Ek+l T M vt(laJ),a K+l L,
(30)
_ Cif e e
Ersa = B Lo = L BTG DI

This rule generates only two successors of each node %k of the search

tree, but the minimum l-tree in subproblem k remains feasible for subproblem

[$3]

R 3. {(Volzenant and Jonker [1982]), Choose a node p whose degree :in

the current l-tree exceeds 2, Such a node is incident with at least two free

4}

edgas, say (il,jl) and (i,,j,) (otherwise Ik contains two edges incident
with 9, hence the remaining edges incident with p belong to or should belong

p) Ek\. tenerate three new subproblems defined by

= I - 'Ir 3 ] 1 3 -‘l .
Ek+1 Lk 5 Ik+1 Ik v;(llil) 2 (12’32), H
’ = f i 9 = of (4 i 2
(31) Ek+2 Ek \.‘_(12,32),‘ 3 Ik_‘_z I-k -g(ll’Jl),
= f (3 2N A =
By = B SUUL I Lz = L

IZ p is incident with an edge in Ik’ then node k+l 1is not generated.
This rule also partiticns the feasible set and makes the l-tree at node k

infzzsi each of the successor nodes, while the number of successors of




Qther features

Held and Karp [1971] and Smith and Thompson {1977] use a Jepth first sub-

i problem selection rule, while Volgenant and Jonker [1982] l.ave implemented both
i a depth first and a breadth first rule, with computational results that indi-
}

cate a slight advantage for the depth first rule (in their implementation),

Extension to the asymmetric TSP

The basic ideas of the l-tree relaxation of the symmetric TSP carry
over to the asymmetric case (Held and Karp [1970]), in that the l-tree in
an undirected graph can be replaced by a l-arborescence in the directed graph
G = (V,A), defined as an arborescence (directed tree) rooted at node 1,
plus an arc (i,l) joining some node i€V{1} to node 1. The constraints

defining a l-arborescence, namely (4) and

(32) 2 x,.,>1, ¥sgV: {1}es
iesjens #

(33) T Tx,,=n
ieviev

(34) Tx, =1
iev *

are easily seen to be a relaxation of the constraint set (2), (4), (5) of
the TSP.

The problem of finding a minimum-cost l-arborescence can again be de-
composed into two independent problems, namely (&) finding a minimum-cost
arborescence in G rooted at node 1, and (8) finding a winimum-cost arc L
(i,1) in G. Problem (&) can be solved by the polynomial time algorithms
of Edmonds [1967] or Fulkerson [1974], or by the O(nz)-time algorithm of

Tarjan [1977].

:
i
|
1
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To obtain the Lagrangean version of the l-arborescence reslaxation, one

forns che funcrion

33) L) = min Z Toe,.x

K. .+ DN,
x&X (@) ieviey S M ay

-

= min z Z (ci. +A.)x,. - =

x&X @) ivier 1€V

where X(@) is the set of incidence vectors of ¢, the family of l-arbo-

rescences in G. Again, the strongest lower bound on v (TSP) is of course
given by \ = % such that

(36) LC) = max LQ.) ,
A

an< subgradient optimization can be used to solve problem (36), However,
computational experience with this relaxation (see Smith [1975]) shows it to
be inferior (for asymmetric problems) to the AP relaxation, even when the

latter uses the original objective function of the TSP.

4o Relaxation III: the Assignment Problem with Lagrangean Objective Function

This relaxaticn was uzed for the asyrmetric TSP by Balas and Christofides
[1981]., It is a considerable strengthening of the relaxation consisting
of the ap with the original cost function, involving a significant computa-
tional effort, which however seems amply justified by the computational
rasules zhat show this approach to be the fastest currently available method
for this class of problems,
Consider the asymmetric TSP defined on the complete directed graph G = (V,A4),

ia zhe integer programming formulation (1), (2), (4), plus the subtour-eliminatisn

oastraiats. The latter can be written either as (3) or as (3), but {:or reassns

e
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o be exolained latar, we include both (3) and (3), as well as some positive
linear combinations oI such inequalities, and -vrite che resulting set of subtour-
elimination inecualities in the generic form

- - t -
(37) - =z aF.x.. >a_, teT.
igrysy T 0

Thus our integer programming formulation of the TSP consists of (1), (2), (4
and (37). To construct a Lagrangean relaxation of TSP, we denote by X the feasible
set of AP, and associate a multiplier w_, t<T, with everv inequalitv in the svstem

t

(37). We then have

. , . - e« T
(38) L(w) =nmin Z T (%5 T b wt( Z CZ a X - g

xfiivisy MM eer Fisvyey B3OLS

- - t t
=min 2 = (ci. - T wtai.) g5 cw a_,

sSiisvier M e VRN e
here W o= awc\. Clearl:, the strongest such relaxation is given bv w = W such
cnat
(39) L(w) = max L(w)

w20

The Lagrangean dual (39) of the TSP could be solved by subgradient optimi-

zation, like in the case of the l-tree relaxation of the symmetric TSP. However,

in this case the vector w of multipliers has an exponential number of compo-

nents, and until an eificient way is found to identify the components chat need

t> be changed at every iteration, such a procedure seems computationallv

expensive, 3alas and Christofides [1981] therefore replace (39) bv the
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: . -,
l W > J and there exists u,v=2 such that

\
| |
} -
No=dw ,=c¢,, if x,, =1
v 3 ’ ‘ clJ i 4 F
| TR

IN
[¢]
o8
(21
w“i
i

and x is the optimal solution found for the AP.

In other words, (40) restricts the multipliers W, to values that,
together with appropriate values u; Vj , form a feasible solution to the
dual of the linear program given by (1), (2), (37) and xij >0, i,j&v,

This mav cause the value of (40) to be less than chat of (39), but it

leaves the optimal solution X to AP, also optimal for the objective function
(38). Thus (£0) can 52 sclved without changing X, While a0 geood

method is known for the exact solution of (40), Balas and Chriscofides {1931]
give a polvnomially bounded sequential noniterative approximation procedure,
which vields multipliers ;c such that L(&) typically comes close to v(TSP):
for randomly generated asymmetric TSP's, L(w) was found to be on the average

99.3% of v(TSP) (Christofides [1979], p. 139-140).

The procedure starts by solving AP for the costs S50 ¥ 1,j, and taking u,, vy

to be the components of the optimal solution to the dual of AP, It then assigns
values to the multipliers v, sequentially, without changing the values assigned
earlier., We say that an inequality (37) admits a positive multiplier, if there
exists a w_ > 0 which, together with the multipliers alreadv chosen, satisfies

the cons:zvaiats of W. At any stage, v(TSP) is bounded from below by

- )
v, + o w.a_ ,
vid eep bt

since =, v,w) is a feasible solution to the dual of the linear program delinad

[¢N

L, I, (27 and x, .,

(020 B AL




The bounding procedure successively identifies valid inequalities that
(i) are violated by the AP solution X , and
(ii) admit a positive multiplier,
Such inequalities are included into L(w) in the order in which they

are found, with the largest possible multiplier w The inclusion of each

t.
new inequality strengthens the lower bound L(w), We denote by Eij the re-

duced costs defined by the optimal dual variables ug vj and the multipliers

; - t
w_ o, X.e., ci, = cii - ui -v, =~ I wtai_.
t J - . t<T J
At any given stage, the admissible graph Go = (V,Ao) is the spanning

subgraph of G containing those arcs with zero reduced cost, i.e.

p N

- t

C(L,3) S A, + v wa,, =c,, -
. i j LeT tij ij

Mg
[9)
1]
m L1

-

where T 1is the index set of the inequalities included so far in L(w). The

inclusion of each new inequality into the Lagrangean function adds at least one

new arc to the set Ao' Furthermore, as long as G° is not stronglwv connected, the
procedure is guaranteed to find a valid inequality satisfying (i) and ({i). Thus

the number of arcs in Ao steadily grows; and when no more inequalities can be

found that satisfvy (i) and (ii), Go is strongly connectad, Finally, if at some

point Go becomes Hamiltonian and a tour H is found in Go whose incidence

vector satisfies (37) with equality for all t<T such that w, > 0, then H is an *
cptimal solution to TSP (see ZIxercise 5).

Three types of inequalities, indexed by T, , T2 and T3 s Trespectively,

1

are used in three noniterative bounding procedures applied in sequence, We
71ill dencte the three components of w corresponding to these three inequali:zy

Yigp, o oamd Vo= (%),

=73

classes, v "= Y, L, L o= (L))
1 1:-1 i -

, respectiveiv,




3ounding nrocedure 1

This procedure uses the inequalities {5) satisfving conditicms (i) and (ii),
Tor any STV, the set of arcs (S,V 8) = - (i,§)2a'i3§, j<¥ S: is called a directed

K

cutset, The inequalities (5) corresponding to the node sets St, t<T, can be

represented in terms of the directed cutsets Kc = (St, v St), as
(&2 Z x,,>1, t 2T, .
(1,18, H !

At any stage of the procedure, the inequality corresponding to cutsec

Kt is easily seen to satisfy conditions (i) and (ii) if and only if

To find a cutset Kt satisfying (43), cne chooses a node i € V and

forms its reachable set R(i) = {jﬁvlchere is a directed path from i to }

[

in

Go. I£ R(1) = V, there is no cutset K_ with i € St satisfying (43), so one chooses
-

]

another node. If R(i) # V for some 1 € 7', then K_ = (R(1), V R(i)) satisfies (&3),
[

and the largest value that one can assign to the corresponding multiplier kt with-

out violating the constraints of W is . = min Cij' Thus the inequality
(1,3)=Kt

(42) corresponding to Kt is included in L(w) by setting the reduced costs to

cij - cij - Ao (i,j):Kt, cij - cij

which the minimum in the definition of :t is attained., The search is then started

otherwise. This adds to Ao all arcs for

again for a new cutset; and the procedure ends when the reachable set of every

node is V. At that stage Go is stronglv connected, and K“Ao # 0 for all

directed cutsets X in G. Also, from (41) and the fact that ag =1, ¥ t& 1 it
Zfo2llaws thac crocadure 1 improves the lower bound on v(TSP) v T, ° i.e., at

-t -t!

the end of prccedure . the lower bound is

3l = v(A?) - ; lc-
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One can show that bounding procedure 1 generates at most (h-1)(h+2)/2
cutsets, where h is the number of subtours in % (see Exercise 6). The computa-
tional effort required to find a cutset satisfying (43) or showing that none
exists is O(njA]),

Example 2.

Consider the 8-city TSP whose cost matrix is shown in Table 1.

Table 1

1 2 3 4 5 6 7 8
1 X 2 11 10 8 7 6 5
2 6 X 1 8 8 4 6 7
3, 5 12 X 11 8 12 3 11
4 i 11 9 10 X 1 9 8 10
5 i 11 11 9 4 X 2 10 9
6 12 8 5 2 11 X 11 9
7 10 11 12 10 9 12 X 3
8 7 10 10 10 6 3 1 X

Table 2 shows the optimal solution x to AP (;ij = 1 for (4,3) boxed in,

= 0 otherwise), the optimal solution (E,;) to the dual of AP (the numbers

% |

1]
on the rim), and the reduced costs Z;j' The solution value is 17. The correspon-

ding admissible graph Go is shown in Fig. 3.
Bounding procedure 1. Cutset K, = ({1, 2, 3, 7, 8}, {4, 5, 6}) admits

X = 2, and cutset K, = ({4, 5, 6}, {1, 2, 3, 7, 8}) admits i, = = 3,

1° “s,6 6,3
The lower bound becomes 17 + 2 + 3 = 22, The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph Go in Fig. 4. Note that Go

of Fig. 4 is strongly connected.ﬂ
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, Table 2
F
1 2 3 4 5 6 7 8
1 1 x [ 9 8 6 5 4 3] o2
3 2 3 X [0] 7 7 3 5 6 1
} 3 | [9] 9 X 8 5 9 0 8 3
4 | 8 8 9 X (0] 8 7 9 1
5 | 7 9 7 2 x (0] 8 7 2
6 | 8 6 3 (0] 9 x 9 7 2
7 {5 8 9 7 6 9 x 0] 3
8 | 4 9 9 9 5 2 [0] x 1
2 0 0 0 0 0 0 0

Fig. 3. Graph Go defined by the AP solution
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; Table 3
1 2 3 4 5 6 7 8
1 . ox [0 9 6 4 3 4 3
!
i
R X [0 5 5 1 5 6 |
3 |9 9 X 6 3 7 0 8
i
i 4 | 5 5 6 x [©] 8 4 6
SR A 6 4 2 x (0] 5 45
6 | 5 3 o [0 9 X 6 4 |
7 5 8 9 5 4 7 x (0]
8 4 9 9 7 3 0 0] x|
4
7) Q\
P~
3 \)6/(

&~

k—' (,\S\/‘//

Fig. 4. Graph Go after bounding procedure 1
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3sundinz orocedure 2

'multiplier

This procedure uses the inequalities (3) that satisiy conditions (i) anc
(ii), il.e, are violated by X and admit a positive multiplier, To write these

inequalities in the general form (37), we restate them as

(550 - T x.,.>1- {st{,

iESchSt 1]
The subtour elimination inequalities (3) (or {44)) are known to be
equivalent to (5) f(or (42)). YNevertheless, an inequality (%44) may admit a
positive multiplier when the corresponding inequality (%2 does not, and vice

versa,

1f Sl"°"sh are the node sets of the h subtours of X, every in-

equality (<4) defined by St’ t=1l,...,h, 1is violated by X; but a positive

can be applied without violating the condition that §ij =1
implies Eij = 0, only by changing the values of some u, and vj , and this

in turn can only be done if a certain condition is satisfied. Roughly speaking,

"t

we have to find a set of rows I and columns J such that, by adding to each u, i<l

and v,, j5J the same amount ._ > 0 that is being added to Eij’ (i,j)E(St, sy,

t

we obtain a new set of reduced costs cgj such that Z{j >0 for all (i,j), and

1y

expressed in terms of the assignment tableau of the Hungarian algorithm whose

Z{j = 0 for all those (i,j) such that

1. The condition for this is best
rows and columns are called lines, and whose row/column intersections are called
cells. <Cells correspond to arcs of G and are denoted the same wav,

Let S_ be the node set of a subtour of X, and

A = {(1.,3)%a 11 3528 * /7 = (i 332y 1% = 12
,(lsJ)~Ao,*:J~St_3 A ‘(-’J)‘A‘C'xij l;

2S
-

[




Thaoram

2 (3alas and Chrizcofide

wn

{1981]). TInequality 14" admizs a

zosizive mulziplier if and only if chere exists a sec C

(9]
H

lines such cha:z
{xz) avery (i,j)éA; i3 covered by exactly one line in ¢

b

(3) avery (i,j)EAt\AL is covered by at most one line in C ,

(y) no (i,j)GAO\At is covered by any line in C ,
If such a set C exists, and it consists of row set I and colurm set J,
then the maximum applicable multiplier ‘s

“. = min Ei'
(i, jrex H

LIV 3y LW s LT .

n

Froof, urficiency. Suppose line set C, consisting of row set I and

column set J, satisfies (z), (§), (¥). Then addin >0 to P for alil

g n¢
S ), as well as to all u., i£1 and Vj’ j&J, produces a set of reduced

’
< t

cascs C£j such that Zéj =0 for (i,j)iAé, since C = I _J satisfies (5)., TFurther,

i i 3 2 i s <! \;- = i 3)& ! = =— =
since C satisfies (3) and (v), cij > cij 0 for all (l,J)\At At, and cij Cij 0

for all (i,j)éAo‘At. The only reduced costs that are diminished as a result
of the above changes, are those corresponding to arcs in one of the three sets
(1,3, (I,V‘Sc\, (V‘St, J) whose union is the set M of the theorem., Hence
setting - equal to the minimum reduced cost over M provides a positive multiplier
thar can be applied to the arcs in (St’ StW.

NVecessitv., Suppose a multiplier _ > O can be applied to the arc set (S_, S O,

t

- . - . - ! . S s .
In ovder to orevent rhe <y for (1,}):At from becoming positive, one must increase

-

. < ] 3 s\ Z !
- 2 Zor all fi,3iV2A .
c

I this can bYe ione, it can Se done 5+ adiing _
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to u, or vj (but not to both) for (i,j)EAé; and the corresponding index sets I

—~

and J form a set C = I'_J that satisfies (g). Let T be the collection of all

sets C obtained in this wav. Now take any CSC., 1If C violates (§), then

e/ =c¢, +.-2.<¢c,, =0 for some (i,j)SA_A', and if it violates (%), then
1] 1] ij t t
Z;j < ;ij = 0 for some (i,j)EAo A . Since by assumption . > 0 can be applied

to (St’ St)’ there exists at least one set C<C that satisfies both (B) and (V).

To check whether for a given subtour-node-set St there exists a set of
lines C satisfying conditions (¢), (B), (Vv), we proceed as follows.

First we construct a set R~ of rows that cannot belong to C, and a set gt
of columns that must belong to C, if conditions (&), (8), (V) are to be satisfied.
To do this, we start with Kkt = @ and in view of (v¥), put into R” all rows i for
which there exists a cell (i,j)iA0 with jéV\St. Then we apply recursively the
following two steps, until no more additions can be made to either set:

If a row i was put into R™, then to satisfy () we put into K+ every column
j such that (i,j)GAé.

If a column j was put into K+, then to satisfy (8) we put into R~ every
row h such that (h,j)EAt.

To state the procedure formally, we set K: =0,
- _ e “rs NS : = b
RS = 11\st\_(1,3)\A0 with j<v s },

and define recursivelv for r = 1,...,r,

-~
"

+ ‘\’-E =r3: osyoa ! . c
Kr_ILJtJ Stl_(l,J)uAt with I\Rr-l}

~
L}

- {42 = PR et
Rr_lLJLi‘St\_(i,J):At with j€K_} .

— ; + -
Here r is the smallest r for which K: = Kr- or Rr = R
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+ .
Next we use a perfectly analogous procedure to construct a set R of rows
that must belong to C and a set K of columns that cannot belong to C, if (.,

+
(3), () are to hold. 1In other words, we set Ro =9,

,=“.£ ‘:_:.._: h‘:’S
ho ' St‘ (i, AO with 1<V t}’

and define recursively for s = 1,...,s

’

}

“
il

+ VyTe s =re inea ! . o
s Rs—l V11~St\4(1,3)\At with J:KS

-1

K.o=K_ U {jéstiz(i,j)éAt with iER;}

s s-1
- — = - + +
Here s = mingsl, s,!, where s1 is the smallest s such that RS = Rs_1 or
- - - + .- -+
K =K , and s, is the smallest s such that R_ "R. # § or K "K_. # 0.
s s~1 2 ] r s r

If s = gﬁ, “hen some row or some column that cannot belong to C, must belong
to C for (.Y, (&), (v) to hold; hence there exists no set C of lines satisfving
(:), (&Y, (), an’ no positive multiplier can be applied to the inequalitv (&4}
corresponding to St'

If s = ;l’ then the set of lines C = I J, where I = St R% and J = K;,
satisfies conditions (3), (3), (¥). Thus we include the inequality (44) corre-
sponding to St into L(w) with the multiplier e > 0 defined in Theorem 2, and
set the reduced costs to Eij - Zij T e (1,3)eM, Eij - zij otherwise. (Here
M is the set defined in Theorem 2.)

In both cases, we then choose another subtour, until all subtours have been
examined. If h is again the number of subtours, bounding procedure 2 requires
O(h-'A,) steps. It can be shown (see Exercise 7) that this procedure improves

the lower bound on v(ISP) bv T i.e., at the end of procedure 2 the lower

t™ e’

bound is
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Example 2 (continued).
Bounding procedure 2., The subtours of X are (1, 2, 3y, (4, 5, A and

(7, ¥ (see Table 3 and Fig. 4.

For s, = (1, 2, 3}, R_ = i3], KI = s k) = 3, R; =2}, Thus C=1.J,
where T = i1, 23, J = {1}, and b T Cap " 1. For §, = {4, 5, 61, R = 63,

. - P + AN , -
KY = {4}; K] = {6, R = {5}, and C = TUJ, with I = {4, 5}, J = {4}, and

= cc , = 2. Finally, for S, = {7, 8}, R_ = {8}, Kl = i{7}; K_ = {7}, and
»2 5’4 halhd 3 3 iy Js o 4 b 1 18 » o v 3
Fa- _ ) . .

since K. "K. = {7} # #, the inequality corresponding to subtour (7, 8) does not

1 1

admit a positive multiplier.
The lower bound becomes B, = B, + byt = 22 41 4+ 2 =25, The new reduced

costs are shown in Table 4, and the corresponding admissible graph Go in Fig. 5

.y

Table &4
1 2 3 4 5 6 7 8
1 X (0] 9 3 3 2 3 2
2 2 x (0] 2 A 0 4 5
3 | [9] 9 X 4 3 7 0 8 |
412 3 4 x @@ 8 2 4
5 1 A 2 0 x (0] 3 2
) 6 | 4 3 0 (0] 9 x 6 4
: 7 | 4 8 9 3 A 7 x [0
8 3 9 9 5 3 0 (0] X




Fig. 3. Graph Go after bounding procedure 2

Bounding nrocedure 3

The class of inequalities used in this procedure is defined as follows.

Suppose Go has an articulation point, i.e, a node k such that G0 - {k} has

more than one component., Let one of the components have node set St’ and denote

wt = V\StU{ki. Then every tour contains an arc of at least one of the cutsets
K; = (St’wt) and KL' = (wt,st), hence the incidence vector x of any tour H
J

satisfies the inequality

(45) = X ., >
(i,j)EK'tUK'c' 1]

Furthermore, (43) satisfies condition (i), i.e. is violated by the AP solution.
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Bounding procedure 3 uses those inequalities (45) that also satisfv

]

i

i

!

; condition (ii). Although everyv inequality (45) is the combination of some

{

g inequalities (3) and equations (2) (see Exercise 8), nevertheless it is possible
to find inequalities (&43) that satisfy condition (ii), i.e., admit a positive

multiplier, when no inequality (3) (i.e., (44)) satisfies it. 1Indeed, it is not

hard to see, that if k is an articulation point of Go and St is the node set of

one of the components of GO - kj, then K;"Ao = Ké’A Ao = @ and a positive

multiplier given by

(46) v, = min c

c,.
: snewd el 1]
(1,3\\K;;kt

can be applied to the arc set Ké‘vKél. On the other hand, if Co has no articula-

tion point, then for any choice of the node k, the minimum in (46) is O and thus
no inequality (45) admits a positive multiplier.

Thus bounding procedure 3 checks for every i€V whether it is an articulation
point, and if so, it takes the corresponding inequality (45) into L(w) with the

N .'EI‘-”
, i, Ktk,Kt .

multiplier e given by (46). This is done by setting c,, - ¢ e

s C, .
1] 1]

cij - ¢,, otherwise., Since Go kas n nodes, and testing for connectivity requires
0(|A|) steps, bounding procedure 3 requires 0(n|A]) steps.
In view of (41) and the fact that (45) has a righthand side of 1, at the end

of bounding procedure 3 one has the following lower bound on v(TSP):

B, = v(AP) + T Kt + £ w4+ I v

2 t<T tST, © €T
A =2 ~t3

Example 2 (continued).

Vertex 6 is an articulation point of Go (see Fig. 5). The corresponding

cutsets are K/ = (i4, 5}, {1, 2, 3, 7, 8}) and x{’= ({1, 2, 3, 7, 8}, {4, 52,
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and the arc set K{;,K{/ admits the multiplier vy T ZS 1 ° l. There is no other
b
articulation point, and the procedure steops with the lower bound B, = B + , =

25+ 1 = 26,

in Fig. 6.
Go in Fig

3 2 1

The new reduced costs are shown in Table 5, and the corresponding

[§S]

i~

(%]

(@]

£ —

(sl
(Yo
"
r~
ra
(o)
(3]

1 0 x 9] 2 1
0 0] 9 X 6 4
9 3 4 7 x [0]
9 5 3 0 0] X

Fig. 6.
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Additional bounding procedures

At the end of bounding procedure 3, Go is scrongly connected and wit, ~ <
articulation points., At that stage an attempt is made to find a tour in GO.
For that purpose a specialized implicit enumeration technique is applied,
with a cut-off rule, If a tour ﬁ is found whose incidence vector X satis-
fies with equality all those inequalities (37) such that w, >0, then H is

optimal for the current subproblem (this follows from elementary Langrangean

theory).

Example 2 (continued). The following tour can be identified by inspection
in G_ of Fig. 6: H = {(1, 2), (2,3, (3,7),(7, 8), (8, 6), (6, &), (4, 5), (5, 1}.
The value of H is 26, equal to L(w) = B3, the lower bound at the end of procedure 3.

The tour H contains exactly one arc of each cutset associated with a positive kt’

namely arc (8, 6) of K, = ({1, 2, 3, 7, 8}, {4, 5, 6}), and arc (5, 1) of

K, = (4, 5, 6}, {1, 2, 3, 7, 8]). Thus the incidence vector of H satisfies

with equality the two inequalities (42) corresponding to K, and KZ’ as required.

1

Further, H contains exactly ISI\ - 1 =2 arcs of the subtour with node set

S, = {1, 2, 3}, namely, (1, 2) and (2, 3); and exactly lszi - 1 =2 arcs of the

subtour with node set S, = {4, 5, 6}, namely (6, 4) and (4, S5). Thus the

complementarity condition is also satisfied for the two inequalities (44&)

corresponding to S1 and Sz. Finally, it contains exactly one arc of the set

7

14

" where K{ = ({4, s}, (1, 2, 3, 7, 8], K{'= ({1, 2, 3, 7, 8}, {4, 5D,

namely (5, 1): so th~ complementarity condition also holds for the inequality

K

"
1.

If, after bounding procedure 3, a tour H is found such that % violates this

(45) corresponding to K{KJK In conclusion, H is optimal.”

complementarity condition for some t < T, then attempts are made to replace those
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izmequalicies 377 that are ''ouc of kilrer,” i.e., for which the complemencaricvy

s

condizion is wiolaced, bv "in kilrer

"

inequalities (of the same zvpe), i.e.,
inegualiries that are tight for ¥ and thus admit positive multipiiers satisiving
the complementarityv condition. These attempts consist of a sequence of three
additional bounding procedures, called 4, S and 6, one for each tvpe of inequalitv
(42), (&%) and (45), respectively, Bounding procedure 4 takes in turn each in-

equality (42) which has a positive multiplier ht and vet is slack for X, and per-

forms an exhaustive search for other inequalities of tvpe (42) that could replace

>

the inequality in question (with new multipliers) and which are tight for x. 1If

the search is successful, the in kilter inequalities with their new multipliers

& Y

veplace the 2yt of kilzer inequality and one proceeds to the next out of kilter

inequalitr of

CLON

twpe (&2 Procedures 5 and 6 perform the same function for out
of kilter inequalities of twvpe (44) and (45), respectively, These procedures are

described in detail in Balas and Christofides [1981]. When procedures 4, S5 and

(o2

are not successful in replacing all out of kilter inequalities (and thus proving

to> be aa optimal tour), thev nevertheless strengthen the lower bound on v(TSP),

a3

Zach of the six bounding procedures is polynomially bounded. This (worst
case) bound is O(na) for procedure 1, 0(n3) for each of the other procedures.
The mean times are considerably shorter, and on the average procedure 2 (the
only one that changes the dual variables u., vj) takes the longest, The
general algeritim of course remains valid if any subset of the six bounding
procedures is used in place of the full set, but computational testing indi-

cates that using all 6 procedures is more efficient (i.e. results in smaller

Search trees and shorter overall computing times) than using any proper subset,
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3ranching rules and other features

3afore branching, all arcs (i,j) such that Eij > U - L(w) are deleted

from G. This "reduction' has removed on a set of 120 randomly zenerated procblems

(Balas and Christofides [1981]), on the average 96-97% of the arcs in problems
with up to 150 variables, and 98% in problems with 175-325 variables.

The AP relaxation with Lagrangean objective function can of course be used
with any of the branching rules BR1 - BR5 described in the context of the AP
relaxation with objective function (1). Balas and Christofides {1981] use two
rules intermittently, namely BR3 (partitioning on the basis of a subtour elimi-
nation inequality (3)), and another rule based on a disjunction from a condi-

tional bound, introduced earlier in the context of set covering (Balas [19801),
This latter rule is motivated by the following considerations.

ler H be the current tour and x its incidence matrix. Remove from L(w)
all those inequalities (37) that are slack while the associated multiplier is
positive. Let Eij be the reduced costs, and L(W) the lower bound, resulting

from this removal.

Theorem 3. Let S=H, S = {(i ),...,(io, jp)} be such that

10 31
p ~
(47 TE ., >U-L@),

and let the arc sets Qr::A, r=1,...,p, satisfy

' g, . <¢&,. , (i,))%A
T (1,5)=0, trlr i

Then evers solution x to TSP such that ecx < U satisfies the disiunction

4
.
"

3, (i,j\iQr\.
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Proof. L(w) is the value of an optimal solution to the dual of the linear
program LP defined by (1), (2), Xij >0, (i,j)5A, and those inequalities (37)
with a positive multiplier. Now let x be a feasible solution to LP that violates
(49). Then x satisfies

(50) S x,..>1

i , r=1,...,p.
(i,peQ, *

Let LP+ be the linear program obtained by adding to LP the constraints (50).

From (48), if we assign the values Ei jot= 1,...,p to the dual variables
r'r

associated with the inequalities (50), we obtain a feasible solution to the dual

P
of LP+. But then the objective function value of this solution is L(w) + I ¢ j o

r=1 "r'r
and hence from (47)

p
cx >L(W) + Toe, . >U.
Z ij =
r=1 "r'r
Thus every solution x to TSP such that cx < U satisfies (49).|
The branching rule can now be stated as follows.
BR9. Choose a minimum-cardinality set S<;ﬁ, S = {(il, jl),...,(ip, jp)],
satisfying (47). Next construct a px\A\ 0-1 matrix D = (dzj) (where r is the
row index and (i,j) the column index), with as many 1's in each column as possible,

subject to the condition (48) and (i_, jr)eQr, r=1,...,p, where
= calgt =
Q. {(i,j)\.Aldij 1}.

Generate the p new subproblems defined by the disjunction (49), where

the r-th subproblem is given by
N
Ek+r = E:k v Qr :

(31> P T =1,00e,pP «
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The branching rule ER? Is used intermitiently wirth BR3 because ar different
nides the ranking of the =wo rules (in terms of strength) may be differenc, The
choice is based on certain indicators of relative strength,

As to subproblem salection, the Balas-Christofides algorithm uses a mixture
of depth first and breadth first: a successor of the current node is selected
whenever available; otherwise the algorithm chooses a node k that minimizes

the functicn

s(k) - 1
(0) - s(k)|’

E(k) = (L(w), - v(AP)) s

where L(w)k is the value of L(w) at node k, V(AP) is the value of the initial AP,
wnile s(0) and s{k) are the number of subtours in the solutions to the initial

AP and the one at node k, respectively.

5, Other Relaxations

Tor the same reasons as in the case ot the AP relaxation with the original
objective function, the AP relaxation with the Lagrangean objective function is
inefficient (weak) in the case of the symmetric TSP, Limited computational
experience indicates that on the average the bound L(w) attains about 96%
of wv(TSP), which compares unfaverably with the bound obtained from the l-tree
relaxation,

On the other hand, the main reason for the weak performance of AP-based
r2laxacions in the case of symmetric problems, namely the high frequency of

subtours of length 2 in the optimal AP sclution, can be eliminated if AP is

ranlacad by the 2-matching problem in the undirected graph G = (V,I).
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e lematching relaxation

The problem of minimizing the function (H) sudbject to conscraints (7) and
(9% is known in the literature as the 2-matching problem, and is obviocusly
2 relaxation of the TSP, Bellmore and Malonme [1971] have used it for the
syrmectric ISP in a way thac parallels their use of the AP-relaxation for the
asymmetric TSP, A 2-matching is either a tour or a collection of subtours,
and the branching rules BR2 - BR5 based on the subtour-elimination inequalities
(3) and (5) for the asymmetric TSP have their exact parallels in branching rules
based cn the subtour elimination inequalities (8) and (10) for the symmetric IS?,

The objective function (6) ~an be replaced, just like in the case of the
AP relaxation, with a Lagrangean function using the inequalities (8) and/or
{10). The Lagrangean dual of the TSP formulated in this way is as hard to
solve exactly as in the asymmetric case, but it can be approximated by a pro-
cedure similar to the one used by Balas and Christofides {1981] with the
AP-velaxation, Further facet defining inequalities, beyond (8) and (10),
based on the work of Grotschel and Padberg [1979], can be used to enrich the
set drawn upon in constructing the Lagrangean functionm,

Although the 2-matching probiem is polynomially solvable (Edmonds [1965]),
the main impediment in the development of an efficient branch and bound proce-
dure based on the 2-matching relaxation has so far been the absence of a goeod
implementation of a weighted 2-matching algorithm, However, as this difficulty
is likely to be overcome soon, the 2-matching relaxation with a Lagrangean

objective function will in all likelihood provide bounds for the symmetric TSP

comparable to these obtained from the l-tree relaxation,

=




2 The n-path relaxation

The preolem of minimizing (1) subject to the comstraint that the solucion

X 5e the incidence matrix of a directed n-pach starting and ending at a Zixed

node v (where "path'" is used in the sense of waik, i.e., with possible repeti-

tions of nodes, and n denotes the length of the path) is clearly a relaxation

of the TSP. An analogous relaxation of the symmetric TSP can be formulated in

terms of n-paths in the associated undirected graph. Furthermore, the constraints

(2) in the asymmetric case, or (7) in the symmetric case, can be used to replace

the objective function (1) or (6), respectively, by a Lagrangean functiocn of the

same tvpe as the one used with the l-arborescence and l-tree relaxations. This

| familyv of relaxations of the TSP was introduced by Houck, Picard, Quevranne and
Vamuganti {1977, The (directed or undirected) n-path problems involved in this
relaxation can be solved by a dvnamic programming recursion in O(n3) steps.
Computational experience with this approach seems to indicate (Christofides [19791,

A

5. 142% that the quality of the bound obtained is comparable to the one obtained frem
the l-arborescence relaxation in the asymmetric case, but slightly weaker than
zhe bound obtained from the l-~tree relaxation in the symmetric case., Since {

solving the l-tree and l-arborescence problems is computationally cheaper than

solving the corresponding n-path problems, this latter relaxation seems to be

dominated (for the case of the 'pure' TSP) by the l-tree or l-arborescence re=-

laxazion, However, the n-path relaxation can easily accormodate extra condi-
tions which the l-tree and l-arborescence relaxations cannot, and which ofcen

sccur in problems closely related to the TSP (traveling salesman problems with

17

(¢}

side constraints appear in vehicle routing (see Chapter 12 of this book) and

sthar ~riaczical contex:zs.)

R E




a substancial generalizacion o>f the n-path relaxation, due to Christofides,

Vingozzi aad Toth [1951) and called scace-space relaxation, has the same

Jdesiradle characteristics of being able to easily accommodare side comscraints.

“he 72 wizh curttiny olanes as a relaxation

Excellent computational results have been obtained recently by Crowder
and Padberg [{1980] for the symmetric TSP by a cutting plane/branch and bound ]
approach. It applies the primal simplex method to the linear program defined
xij >0, ¥%i,j, and an unspecified subset of the inequalities
defining the ccnvex wull of incidence vectors of tours, zenerated as needed

to avoid fractional pivots, The procedure uses mostly :inequalities of the

)

form 1)), but also other facet inducing inequaliicies from among those intre-

S

ducea by Grgtschel and Padberg [1979]. When the search for the next inequality
needed for an integer pivot fails, the procedure branches, Since the main
faature cf this approach is the identification of appropriate inequalities to
be added to the linear program at each step, it is being reviewed in the

chapter on cutting plane methods,

6., Performance of State of the Ar:t Computer Codes

In this section we review the performance of some state of the art branch
and bound codes for the TSP, by comparing and analyzing the computational results

reported Sy the authors of these codes.

The asvmmetric TSP

The three fastest currently available computer codes for the asyrme:ric TS?

sgem =2 be those of 3alas and Christofides [1981), Carpaneto and Tcoth [1S80)

. .

373 I-=itn, Srini-rasan and Thompson [1977], to be designated in che

Hy

2llowinz ov

22, 1T z2nd 337, raspectively., The main characteristics of these




rized in Table 6. Table 7 describes the computational results reported by the
j authors or the codes, Each of the codes was run on a set of (different) asvrmec-
ric TSP's whose costs were independently drawn from a uniform distribucion of the
integers in the interval [1,1000]. The entries of the table represent averages
for 5 problems (SST), 20 problems (CT) and 10 problems r(BC), respectively, in
each class, The number of nodes in the SST column is not strictly comparable
with that in the CT and BC columns, since it is based on counting only those
nodes that were selected for branching and processed, Also, the computing times
are not strictly comparable without a correction, since the CDC 7600 is about 3

times faster than the WIIVAL 1108 and the CDC 6600 (Computer Review, GML Corp.,

Lexington, MA, 1979), The picture that emerges, however, by comparing the
figures within each column, for any of these three codes, is a pattern of growth
in computational effort with problem size, that seems rather modest for a problem
usually viewed as ''motoriously intractable', We will discuss the functional
relationship between problem size and computational effort in some detajl further
below.

For problems in the range 40 - n 7 180, the number of nodes generated by
the BC algorithm is considerably smaller than the corresponding numbers for the
other two algorithms, although CT uses a '"breadth first" branching strategy, meant

to minimize the number of nodes generated, at the cost of increased storage

requirements. The reason for this is that the Lagrangean bounding function used
by BC changes the ranking of tours among the assignments, removing from considera-
tion many assigmment problems whose value in terms of the original objective
function is higher than that of the optimal TSP, and which therefore must be

processed bv the CT algorithm. On the other hand, in the range 200 -~ n 240,
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Z:ble 2. Summary description of three codes for the 2symmecric IS?
~
: [{ SST cT 3¢
: 1
I '
| Relaxation !i AP with AP with ' AP with
f ! ISP objective TSP objective ' Lagrangean
i ‘ i . objective
! ! '
! ,
| i
. ~ower bounding | < (AP), obtained ' v(AP), cbtained ! lower bound :n
t :

simplex mezhod,

, method 1pos:-

obrained bHv

olus penalcy optimizing aporoximation
; version) nrocedures
|
Sranching rule | BR3 3R3 3R3 + 3R
. .
Subproblem i denth first breadth first depth first upon
seleczion ‘ forward step,

breadth first

upon back:tracking

Upper bounding

no special

procedure

no special

procedure

tour-finding

heuristic

} Variable fixing

R

no

[

| yes
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Tanla 7. Computactional results on randomly zenerated asvmmetric TSP's
o
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. 3C seems o generate more acdes than CT; the reason for this mav »e thar at
this »oint zhe advantage of the "breadth first" strategv used v CT sutweizhs

that of the stronger bwunding procedures used dv 3C. This seems to suggest thac

an algzorithm 2aszd on the lLagrangean bounding procedures >f 3C, but using the
"breadth first' node selecticn strategy of CT, will generate fewer nodes <or
any problem size, than either the CT or the BC algorithms. This is undoubtedlw
true, but notice that at the current state of the art, the limiting factor in

,

the use of both algorithms is not computing time (which has never exceeded 1.3

k minutes for any problem), but (in core) storage space.

-

"o Svmmetric TSP

The fasctest currencly available branch and bound codes for the svmmecric TSP

$ee™ o De those of Smizh and Thompson [1977] and Tolgenant and Jonker 11982]
to De Jesignated in the following by ST and VJ, respectively, Table 8 summa-
rizes their main character’stics, while Table 9 reports on their computaticnal
performance,

Again, each c¢f the two codes was run on a set of (different) symmetric
TISP's whose costs were independently drawn from a uniform discributicn of the
integers in the interval [1,1000]. The entries of the table represent averazes
for 15 problems (except for n=80, where the entry for SST is the average for

5 problems only)., The CYBER 750 is about 3 times faster than the IMIVAC 1108,

-

: } 3oth codes were also ctested on randomly generated symmetric Zuclidean

S¢'s, which required for each code a greater computational effort (e,z.. for

g 1 = 50 che average number of subgradient iterations was 3049 for ST and
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} Tadle 3. 3Sumary description o two codes for the svmmerric TSP
1
+
: " i ST VJ
'
! S e — = —_—
‘ ;J :
2 Relaxation ' l-tree with ' l-tree with
{ Lagrangean objective Lagrangean objeczive
. ] —
i  Lower bounding 'l subgradient * subgradient
. j. optimization optimization with
: i convex combination
il - .
K ;l of subgradients
i
3ranching rule | 3R7 ZR8
' ) !
3udproblsm selzczionm ! depth first . deprh first
‘L
[ Upper bounding ‘ no special procedure no special procedure
!
I !
. Variable fixing ' no | yes
’ s
?’ Table 9., Computational resulzs on randomly generated symmetric TS?P's
" '
! Nodes of the Subgradient Computing time
; | search tree iterations ! (seconds)
s 1 a ‘
| ) ’
2 - (3 . A(%)
| stH v?) ST vJ f 5730 | vst
' e
; ] i
; S0 17 526 - oo22.1 ! - ;
: . - - =~ ! . .
50 R 572 P35z S 95 SR :
. .
. g L19 L os0 - sl | -
i ' i ]
i [ i - -
v 2) L1 ! 754 . 702 ' 83,0 § 15,5
} I
’ 123 ' - - 1654 F - 53.2 ‘
i | | |
117 Number of nodes that were aexplored: (2} not reported; (J3) UNIVAC 1108;
©4) CY3ZR TS50,
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Averaze performance as a function of problem size

TSP is well known to be NP-complete, hence in all likelihood there is no
polvnomial time ISP algorithm, i.,e, no algorithm guaranteed to solve every instance
of TSP in a number of steps polynomial in n. However, this statement refers to
the worst case behavior of algorithms, and does not exclude the existence of
algorithms whose performance, though exponential in the worst case, is on the
average polynomial in n, To make the colloquial term "on the average' more
precise, assume the costs cij of TSP are random numbers drawn inde-
pendently from a uniform distribution over the unit interval, Whether the
expected time required to solve such a problem is an exponential or polynomial
function of n, is at present an open question, on which the opinion of experts
is divided (see, for instance, Bellmore and Malone [1971], and Lenstra and
Rinnooy Xan [1978]).

While the theoretical issue remains unsolved, it is not irrelevant to
examine from this point of view the empirical performance of some of the more
efficient algorithms on randomly generated TSP's., 1In a recent studyv, Balas,
McGuire and Toth [1983] have fitted three different approximating curves to the
data of Table 7 for each of the three codes SST, CT and BC for the asymmetric
TSP, in an attempt to determine which of the three types of functions describes
best the behavior of each algorithm., The data of Table 7 were corrected for the
difference in speed between the CDC 7600 and the other two computers by multiplying
by 3 the computing times reported for the Balas-Christofides code. The functions

examined were:

t(n) = gna (polynomial),

. Slogn .
t(n) = an (superpolvnorial’,
. :n

f(n) = -e (exponential),

where log stands for the natural logarithm and e for its base.

,.j‘




for each case.
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The outcome is shown in Tables 10,

11 and 12.

Each of the three functions was expressed in logarithmic form, and a simple
regression of log f(n) was ='n on log n (in the case of the polynomial function),
on log ' n (in the case of the superpolynomial function), and on n (in case of

the exponential function), in order to find the best fitting values of 5 and 2

Table 10, Statistical analysis of the Smith-Srinivasan-Thompson algorithm
50 < n < 180

:‘ o | Standard i
! Type of error of Coefficient of

function Best fit estimation determination
" Polynomial 0.38 x 107> x n>*473 | 0.505 0.883 (
H | :
| !
| Superpolynomial ~ 0.105 x 107} x nO-377108n ‘ 0.519 0.877
|
| Exponential 1.19 x ¢0-0326n | 0.595 0.838

Table 11, Statistical analysis of the Carpaneto-Toth algorithm
40 < n < 240
Standard i

Type of error of Coefficient of

¢« function Best f£it estimation determination
i

| Polvnomial 0.26 x 1073 x p2+261 | 0.193 0.978 :
: - 2 1 !

Superpolynomial 0.47 x 1071 x p0-2421osn . ogs 0.962 |
| Exponential 1.05 x o0-0184n 0.488 0.860 |
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Table 12, Statistical analysis of the Balas-Christofides algorithm

50 - n 325
{ Standard
" Type of : error of Coefficient of
* function i Best fit ‘ estimation , determination
. Polynomial | 0.5 x 1070 x 53+ 114 ; 0.361 . 0.962
i |
1
i i
i Superpolynomial 0.87 x 10 3 X n0.32010gn i 0.260 , 0.980
- !
Exponential 0.85 x 1071 x 20205 | 5000 1 g ggg

)

These results suggest that in the limited range of n for which the
algorithms were tested (40 i n < 180 for SST, 40 < n < 240 for CT, and 50 - n - 32¢
for BC), their behavior can be almost equally well described by any of the three
types of functions considered., Although the rankings given by the coefficient of
determination seem to be polynomial/superpolynomial/exponential for SST and CT,
versus exponential/superpolynomial/polynomial for BC, the differences between
the coefficients of determination for the three function types are too small in
comparison to the differences between the same coefficients for the different

algorithms, in order to attach much significance to these rankings. Further caution

and reservations are in order because of the considerable differences in the
range of n over which the three codes were tested.

In an attempt to obtain a more meaningful ranking of the three types of
approximation curves, the range of n for each of the three algorithms was then
broken up into two approximately equal parts, and the same three function types

were fitted separately to the data in the lower half and in the upper half of

the range of n., The results, shown in Tables 13, 14, 15, yield the same rankings
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Table 13. The Smith-Srinivasan-Thompson algorithm, with
splitting of the range of n

|
E Standard
g Type of | © error of Coeificient of
t function Best fit estimation determination ;
T .
3 50 < n - 110 | }
f |
‘ Polynomial 0.22 x 1077 x a>+%% | 0.582 0.748
-9 ;
Superpolynomial 0.58 x 10 ~ x n0.419logn 0.599 0.732
Exponential 0.368 x 0-0437n 0.664 0.672 :
. al - :
120 < n < 180 ’
Polynomial 0.14 x 1074 x n3-243 0.5183 0.400 |
Superpolynomial 0.43 x 107% x p0r3%7logn 0.5155 |  0.406
| Exponential 4.48 x e0+0225n 0.5041 0.432
s
Table 14, The Carpaneto-Toth algorithm, with
splitting of the range of n ’
) 1 Standard |
I Type of error of Coefficient of
function Best fit estimation determination
i 40 < n < 120
2 ! Polynomial 0.45 x 10°% x n2+%8° 0.116 0.990
2 |
' - 3171
! Superpolynomial 0.12 x 107! x o’ oen 0.120 0.989 ;
, ,
| Exponential 0.33 x ¢0:0364n 0.237 0.959
| 140 < n < 240
| Polynomial 0.22 x 107} x }-408 0.141 0.698 ‘
: Superpolynomial 0.9 x n0.13410gn 0.138 0.708 |
! |
Exponential 9.0 y ¢2-0073n 0.128 0.749 |
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Table 15. The Balas-Christofides algorithm, with
splitting of the range of n

Standard
Type of error of Coefficient of
* function Best fit estimation determination
50 < n < 175 .
i Polynomial 0.14 x 1074 x a2c%07 " 0.288 0.937
| Superpolynomial 0.74 X 10-2 X n0.267logn i 0.242 é 0.956
Exponential 0.54 x 107! x n0-0%42n | 0.120 . 0.989
200 < n < 325 | f
i Polynomial 0.5 x 107} x n*37° 0.100 f 0.984
Superpolynomial 0.11 x 10-3 X n0.39510gn 0.095 l 0.986
Exponential | 0.199 x 0-0170n 0.087 0.988

as before for the lower half of the range of n, but almost completely reverse

the rankings for the upper half of the range: 1ignoring differences of less than
0.01 in the coefficient of determination, the exponential function ranks first
over this range for both the SST and CT algorithms, with the polynomial and
superpolynomial functions tied for second place; whereas for the BC algorithm,

all three functions are now tied, To the cautionary note voiced earlier, we
should now add the fact that the coefficient of determination for this range of

n (i.e., the upper half) is considerably weaker for SST (0.40-0.43) and CT (0.70-0.75)
than for the full range of n, while for BC it is about the same, i.e., rather
strong (0.98-0.99). The findings listed above are supported bv additional statis-
tical evidence, for which, as well as for the methodological details of the
analysis, the reader is referred to Balas, McGuire and Toth [1983].

The conclusions that we draw from this statistical analvsis are as follows.
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First, over the limited range of n for which data are available, the per-
formance of the three algorithms analvzed can be described almost equally well
bv each of the three function types considered: polynomial, superpolynomial and
exponential, Second, while the best fitting polynomial functions are of a moderate
degree (ranging between 1.4 and 4.4), the best fitting exponential functions have
a base very close to 1 (ranging between 60.046 = 1.079 and eo'007 = 1.012). ©Note
that an exponential function of this type is very different from the function e

While the value of the latter increases more than twice whenever the variable goes

from n to n + 1, the value of 1.012" increases only bv 1.2 percent when the variable

goes from n to n + 1,
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EXERCISES
1. Show that, if the relaxation R of TSP used in the branch and bound
procedure of section 1 (either version) has a finite solution set, and the
branching rule is such that at every node i at least one solution to the re-

LR, .,

laxed problem Ri becomes infeasible for all the successor problems R'l"’ .
i iq

then the procedure is finite., For the rooted tree representation of the branch
and bound procedure discussed in section 1, what is the maximum depth of the
tree, i.e., the maximum length of a path joining any node to the root? Give
a bound on the number of nodes of the rooted tree.

2., Let x* = (x?j) be an optimal solution to the assignment problem AP,

and let AP, be the assignment problem obtained from AP by adding the constraint

1
x, . = 0 for some (io, jo) such that x? . = 1. Describe a version of the
tolo 0”0
Hungarian method that starts with x* and finds an optimal solution to AP1 in

O(nz) steps. (Hint: show that only one labeling is required.)

3, Show that the "breadth first" rule of always choosing the node with
the best lower bound produces a search tree with a minimum number of nodes,
if (i) every node selection is uniquely determined, i.e., there are no ties
for the best lower bound; and (ii) the branching and bounding at any given
node is done only on the basis of information generated on the path from the
root of the tree to the given node. Construct examples to show that neither
(1) nor (1i) is sufficient by itself (Fox, Lenstra, Rinnooy Kan and Schrage
f1978)). Assuming that conditions (i), (ii) are not satisfied, describe a
subproblem selection rule that combines some of the advantages of "breadth
first" with some of those of ''depth first' (Forrest, Hirst and Tomlin [1974],

Balas [1975]).

.
T AL
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. . . k .
4, A subgradient of a convex function f(x) at x = x is a vector s

suc: that

1

fex) = £y s (x-x%) , ¥ x,

and the subdifferential of f(x) at xk is the set of all subgradients of
f(x) at x = xk.

Let o be the family of l-trees in G = (V,E) introduced in section 3,
and let X(-) denote the set of incidence vectors of l-trees. Show that, if
H(xk) is a l-tree whose incidence vector xk minimizes the function

S (e;, +AF AR
18V § >i I
cn X@), and d? is the degree of node i in H(kk), then the n-vector whose
.k .
components are d? - 2, i€V, is a subgradient of L()\) at A . Identify the

subdifferential of L(i) at xk.

5. Let Go (V,Ao) be the admissible graph defined in section 4 with
respect to (u, v, w), and let X be the incidence vector of a tour H(X) in Go.
Show that H(x) is an optimal tour in G if % satisfies inequality (37) with
equality for all t<T such that v, > 0., Is this sufficient condition also
necessary? (k_ut: use the optimality conditions for the linear program de-
fined by (1), (2), (37) and xij >0, ¥1i,j, and its dual.)

6. Show that bounding procedure 1 of section &4 generates at most
(h-1)(h+2)/2 cutsets, where h is the number of subtours in the optimal solu-
tion X to AP. (Hint: wuse the following facts: (i) any node of a strongly
connected component, hence of a subtour, is reachable from any other node;
(11) every directed cutset that is generated adds to Ao at least one new

arc joining some subtour to some other subtour; and (iii) when two subtours

are joined by arcs in both directions, they form a strongly connected component.)
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7. Show that, if Bl is the lower bound on v(TSP) obtained by bounding

procedure 1, the lower bound generated by boinding procedure 2 is

(Hint: wuse the fact that if the cost of each arc in the set _ (S , S )

t
t‘T2

is increased by o then the value of the solution x (hence of the solution

(u,v) to the dual of AP obtained at the end of procedure 2) is v(AP) + <& iStl;t.)
t<T

2

8. Let k be an articulation point of the admissible graph GO, let St be
the node set of one of the components of GO-{k}, and consider the two directed
cutsets

f= ik} "=
K)o = (s, vs Uik}, K'={vs ki, s

Show that the inequalityv

T x,>1
w j -

.C/[:
(i,J)»Kt.,Kt

is the sum of the inequality (5) for § = Stlj{k}, the inequality (3) for S =S,
and the equations (2) for all iESt and jESt.

9. Formulate the n-path relaxation of the TSP discussed in section 5 for
both the asymmetric and the symmetric cases, with a Lagrangean function involving
the equations (2) (in the asymmetric case) or (7) (in the symmetric case). Give

some examples of side constraints, i.e., extra conditions, that this relaxation

of TSP can accommodate but the l-arborescence or l-tree relaxations can not.
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traveling salesman problem (TSP). The introducfion (Section 1) discusses the
main ingredients of branch and bound methods for the TSP. S:ctions 2, 3, and
4+ discuss classes of methods based on three different relaxations of the TSP:
the assignment problem with the TSP cost function, the l-tree problem with a
Lagrangean objective function, and the assignment problem with a Lagrangean
obiective function., Section 5 briefly reviews some other relaxations of the
TSP, while Section é# discusses the perfermeance—eof-some—state—of—the art
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This paper reviews the state of the art in enumerative solution methods for th
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computer codes. Besides material from the literature, the paper also includes
the results and statistical analvsis of some computational experiments designed
for the purposes of this review.







